3k^2+23k-23=0

Simple and best practice solution for 3k^2+23k-23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+23k-23=0 equation:


Simplifying
3k2 + 23k + -23 = 0

Reorder the terms:
-23 + 23k + 3k2 = 0

Solving
-23 + 23k + 3k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-7.666666667 + 7.666666667k + k2 = 0

Move the constant term to the right:

Add '7.666666667' to each side of the equation.
-7.666666667 + 7.666666667k + 7.666666667 + k2 = 0 + 7.666666667

Reorder the terms:
-7.666666667 + 7.666666667 + 7.666666667k + k2 = 0 + 7.666666667

Combine like terms: -7.666666667 + 7.666666667 = 0.000000000
0.000000000 + 7.666666667k + k2 = 0 + 7.666666667
7.666666667k + k2 = 0 + 7.666666667

Combine like terms: 0 + 7.666666667 = 7.666666667
7.666666667k + k2 = 7.666666667

The k term is 7.666666667k.  Take half its coefficient (3.833333334).
Square it (14.69444445) and add it to both sides.

Add '14.69444445' to each side of the equation.
7.666666667k + 14.69444445 + k2 = 7.666666667 + 14.69444445

Reorder the terms:
14.69444445 + 7.666666667k + k2 = 7.666666667 + 14.69444445

Combine like terms: 7.666666667 + 14.69444445 = 22.361111117
14.69444445 + 7.666666667k + k2 = 22.361111117

Factor a perfect square on the left side:
(k + 3.833333334)(k + 3.833333334) = 22.361111117

Calculate the square root of the right side: 4.728753654

Break this problem into two subproblems by setting 
(k + 3.833333334) equal to 4.728753654 and -4.728753654.

Subproblem 1

k + 3.833333334 = 4.728753654 Simplifying k + 3.833333334 = 4.728753654 Reorder the terms: 3.833333334 + k = 4.728753654 Solving 3.833333334 + k = 4.728753654 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-3.833333334' to each side of the equation. 3.833333334 + -3.833333334 + k = 4.728753654 + -3.833333334 Combine like terms: 3.833333334 + -3.833333334 = 0.000000000 0.000000000 + k = 4.728753654 + -3.833333334 k = 4.728753654 + -3.833333334 Combine like terms: 4.728753654 + -3.833333334 = 0.89542032 k = 0.89542032 Simplifying k = 0.89542032

Subproblem 2

k + 3.833333334 = -4.728753654 Simplifying k + 3.833333334 = -4.728753654 Reorder the terms: 3.833333334 + k = -4.728753654 Solving 3.833333334 + k = -4.728753654 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-3.833333334' to each side of the equation. 3.833333334 + -3.833333334 + k = -4.728753654 + -3.833333334 Combine like terms: 3.833333334 + -3.833333334 = 0.000000000 0.000000000 + k = -4.728753654 + -3.833333334 k = -4.728753654 + -3.833333334 Combine like terms: -4.728753654 + -3.833333334 = -8.562086988 k = -8.562086988 Simplifying k = -8.562086988

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.89542032, -8.562086988}

See similar equations:

| 5-4y=1 | | y=A(x+3)(x-4+5i)(x-4-5i) | | (2x-25)+(2x+17)+(x+13)=180 | | -9x+4=58 | | 5x^2+-19x-4=0 | | 21=-3e | | x^2+-19x-4=0 | | 6-7x=-8 | | 7+7x-4x=10 | | 157-3x=5x+85 | | =49x^2+4 | | 1+4x-6x=-13 | | A=0.5h(c+d) | | -4+3a=5 | | 7y+7=7 | | -81=-7x-3x-1 | | 14-2x+6=12 | | x-2x+4=7 | | (x-11)+(2x-7)+x=180 | | 8+5x+3x=-16 | | 4(2x+9)=-20 | | x+(2x)+(2x+15)=135 | | (x-11)+(2x-7)=180 | | 9+x=2+5x | | 6-5x+3x=-8 | | 10x+x=180 | | 6/5y-18=-30 | | 7(4w+8)=1 | | 14=x+6x+7 | | 0=16x^2+120 | | 11(22+x)=121 | | -16x^2+120=0 |

Equations solver categories